Арифметические операции в позиционных системах счисления

Цель урока: формирование умения выполнять Арифметические операции в позиционных системах счисления

Ход урока:

  1. Орг. момент

  2. Анализ самостоятельной работы.

  3. Изучение нового материала

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.

Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания.

Сложение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа 1102 и 112:

Проверим правильность вычислений сложением в десятичной системе счисления. Переведем двоичные числа в десятичную систему счисления и затем их сложим:

1102 = 1 × 22 + 1 × 21 + 0 × 20 = 610;

112 = 1 × 21 + 1 × 20 = 310;

610 + 310 = 910 .

Теперь переведем результат двоичного сложения в десятичное число:

10012 = 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 = 910 .

Сравним результаты — сложение выполнено правильно.

Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой:

Вычитание многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей вычитания с учетом возможных заемов из старших разрядов. В качестве примера произведем вычитание двоичных чисел 1102 и 112:

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

Умножение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей умножения по обычной схеме, применяемой в десятичной системе счисления с последовательным умножением множимого на цифры множителя. В качестве примера произведем умножение двоичных чисел 1102 и 112:

Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 1102 на 112:

Арифметические операции в восьмеричной и шестнадцатеричной системах счисления. Аналогично можно выполнять арифметические действия в восьмеричной и шестнадцатеричной системах счисления. Необходимо только помнить, что величина переноса в следующий разряд при сложении и заем из старшего разряда при вычитании определяется величиной основания системы счисления:

Для проведения арифметических операций над числами, выраженными в различных системах счисления, необходимо предварительно перевести их в одну и ту же систему.

  1. Закрепление

Задания

1.Провести сложение, вычитание, умножение и деление двоичных чисел 10102 и 102 и проверить правильность выполнения арифметических действий с помощью электронного калькулятора.

2. Сложить восьмеричные числа: 58 и 48, 178 и 418.

3. Провести вычитание шестнадцатеричных чисел: F16 и А16, 4116 и 1716.

  1. Сложить числа: 178 и 1716, 418 и 4116

5.Итоги

6. Д/з п. 4.1.2, 4.1.3

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here