Геометрия 11 класс
Контрольная работа № 1 по теме:
«Координаты точки и координаты вектора»
Вариант 1
-
Найдите координаты вектора , если А (5;-1; 3), В (2;-2; 4).
-
Даны векторы (3; 1;-2) и (1; 4;-3). Найдите .
-
Изобразите систему координат Охуz и постройте точку А (1;-2;-4). Найдите расстояния от этой точки до координатных плоскостей.
Вариант 2
-
Найдите координаты вектора , если С (6; 3;-2), D (2; 4;-5).
-
Даны вектора (5;-1; 2) и (3; 2;-4). Найдите .
-
Изобразите систему координат Охуz и постройте точку В (-2;-3; 4). Найдите расстояния от этой точки до координатных плоскостей.
Геометрия 11 класс
Контрольная работа № 1 по теме:
«Координаты точки и координаты вектора»
Вариант 1
-
Найдите координаты вектора , если А (5;-1; 3), В (2;-2; 4).
-
Даны векторы (3; 1;-2) и (1; 4;-3). Найдите .
-
Изобразите систему координат Охуz и постройте точку А (1;-2;-4). Найдите расстояния от этой точки до координатных плоскостей.
Вариант 2
-
Найдите координаты вектора , если С (6; 3;-2), D (2; 4;-5).
-
Даны вектора (5;-1; 2) и (3; 2;-4). Найдите .
-
Изобразите систему координат Охуz и постройте точку В (-2;-3; 4). Найдите расстояния от этой точки до координатных плоскостей.
Геометрия 11 класс
Контрольная работа № 2 по теме:
«Метод координат в пространстве»
Вариант 1
-
Вычислите скалярное произведение векторов , если
-
Дан куб АВСДА1В1С1Д1. Найдите угол между прямыми АД1 и ВМ, где М – середина ребра ДД1.
-
При движении прямая b отображается на прямую b1, а плоскость — на плоскость 1 и b׀׀1. Докажите, что b1׀׀1.
Вариант 2
-
Вычислите скалярное произведение векторов , если
-
Дан куб АВСДА1В1С1Д1. Найдите угол между прямыми АС и ДС1.
-
При движении прямая а отображается на прямую а1, а плоскость — на плоскость 1 и а. Докажите, что а11.
Геометрия 11 класс
Контрольная работа № 2 по теме:
«Метод координат в пространстве»
Вариант 1
-
Вычислите скалярное произведение векторов , если
-
Дан куб АВСДА1В1С1Д1. Найдите угол между прямыми АД1 и ВМ, где М – середина ребра ДД1.
-
При движении прямая b отображается на прямую b1, а плоскость — на плоскость 1 и b׀׀1. Докажите, что b1׀׀1.
Вариант 2
-
Вычислите скалярное произведение векторов , если
-
Дан куб АВСДА1В1С1Д1. Найдите угол между прямыми АС и ДС1.
-
При движении прямая а отображается на прямую а1, а плоскость — на плоскость 1 и а. Докажите, что а11.
Контрольная работа №2 по теме: «Метод координат».
Вариант 1
-
С(-3,2,-4). Найдите сумму расстояний от точки С до оси Ох и точки С до плоскости Оуz.
-
Известны координаты вершин треугольника С(-2;3;1), Д(2;-4;3), Е(-2;-3;1). ДК – медиана треугольника. Найдите ДК.
-
При параллельном переносе точка А (-3;4;6) переходит в точку А1 (2;-4;5). Найдите сумму координат точки В1, в которую при этом параллельном переносе переходит точка В(-2;-4;1).
-
Найдите площадь треугольника АВС, если А (3;0;0), В(0;-4;0), С(0;0;1).
Вариант 2
-
А(3,-2,-4). Найдите сумму расстояний от точки А до оси Оу и точки А до плоскости Оxz.
-
Известны координаты вершин треугольника А(2;-1;-3), В(-3;5;2), С(-2;3;-5). ВМ – медиана треугольника. Найдите ВМ.
-
При параллельном переносе точка М (-3;2;-5) переходит в точку М1 (1;-3;-2). Найдите сумму координат точки К1, в которую при этом параллельном переносе переходит точка К(1;-2;-5).
-
Найдите площадь треугольника АВС, если А (3;0;0), В(0;-4;0), С(0;0;1).
Контрольная работа №2 по теме: «Метод координат».
Вариант 1
-
С(-3,2,-4). Найдите сумму расстояний от точки С до оси Ох и точки С до плоскости Оуz.
-
Известны координаты вершин треугольника С(-2;3;1), Д(2;-4;3), Е(-2;-3;1). ДК – медиана треугольника. Найдите ДК.
-
При параллельном переносе точка А (-3;4;6) переходит в точку А1 (2;-4;5). Найдите сумму координат точки В1, в которую при этом параллельном переносе переходит точка В(-2;-4;1).
-
Найдите площадь треугольника АВС, если А (3;0;0), В(0;-4;0), С(0;0;1).
Вариант 2
-
А(3,-2,-4). Найдите сумму расстояний от точки А до оси Оу и точки А до плоскости Оxz.
-
Известны координаты вершин треугольника А(2;-1;-3), В(-3;5;2), С(-2;3;-5). ВМ – медиана треугольника. Найдите ВМ.
-
При параллельном переносе точка М (-3;2;-5) переходит в точку М1 (1;-3;-2). Найдите сумму координат точки К1, в которую при этом параллельном переносе переходит точка К(1;-2;-5).
-
Найдите площадь треугольника АВС, если А (3;0;0), В(0;-4;0), С(0;0;1).
Геометрия 11 класс
Контрольная работа № 3 по теме:
«Цилиндр, конус и шар»
Вариант 1
-
Осевое сечение цилиндра – квадрат, площадь основания цилиндра равна 16 см2. Найдите площадь поверхности цилиндра.
-
Высота конуса равна 6 см, угол при вершине осевого сечения равен 120. Найдите:
а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми 30;
б)площадь боковой поверхности конуса. -
Диаметр шара равен 2т. Через конец диаметра проведена плоскость под углом 45 к нему. Найдите длину линии пересечения сферы с этой плоскостью.
Вариант 2
-
Осевое сечение цилиндра – квадрат, диагональ которого 4 см. Найдите площадь поверхности цилиндра.
-
Радиус основания конуса равен 6 см, а образующая наклонена к плоскости основания под углом 30. Найдите:
а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми 60;
б) площадь боковой поверхности конуса. -
Диаметр шара равен 4т. Через конец диаметра проведена плоскость под углом 30 к нему. Найдите площадь сечения шара этой плоскостью.
Геометрия 11 класс
Контрольная работа № 3 по теме:
«Цилиндр, конус и шар»
Вариант 1
-
Осевое сечение цилиндра – квадрат, площадь основания цилиндра равна 16 см2. Найдите площадь поверхности цилиндра.
-
Высота конуса равна 6 см, угол при вершине осевого сечения равен 120. Найдите:
а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми 30;
б)площадь боковой поверхности конуса. -
Диаметр шара равен 2т. Через конец диаметра проведена плоскость под углом 45 к нему. Найдите длину линии пересечения сферы с этой плоскостью.
Вариант 2
-
Осевое сечение цилиндра – квадрат, диагональ которого 4 см. Найдите площадь поверхности цилиндра.
-
Радиус основания конуса равен 6 см, а образующая наклонена к плоскости основания под углом 30. Найдите:
а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми 60;
б) площадь боковой поверхности конуса. -
Диаметр шара равен 4т. Через конец диаметра проведена плоскость под углом 30 к нему. Найдите площадь сечения шара этой плоскостью.
Геометрия 11 класс
Контрольная работа № 4 по теме:
«Объемы тел»
Вариант 1
-
Апофема правильной треугольной пирамиды равна 4 см, а двугранный угол при основании равен 60. Найдите объем пирамиды.
-
В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 30. Диагональ большей боковой грани призмы составляет с плоскостью ее основания угол в 45. Найдите объем цилиндра.
Вариант 2
-
Боковое ребро правильной треугольной пирамиды равно 6 см и составляет с плоскостью основания угол в 60. Найдите объем пирамиды.
-
В конус вписана пирамида. Основанием пирамиды служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 30. Боковая грань пирамиды, проходящая через данный катет, составляет с плоскостью основания угол в 45. Найдите объем конуса.
Геометрия 11 класс
Контрольная работа № 4 по теме:
«Объемы тел»
Вариант 1
-
Апофема правильной треугольной пирамиды равна 4 см, а двугранный угол при основании равен 60. Найдите объем пирамиды.
-
В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 30. Диагональ большей боковой грани призмы составляет с плоскостью ее основания угол в 45. Найдите объем цилиндра.
Вариант 2
-
Боковое ребро правильной треугольной пирамиды равно 6 см и составляет с плоскостью основания угол в 60. Найдите объем пирамиды.
-
В конус вписана пирамида. Основанием пирамиды служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 30. Боковая грань пирамиды, проходящая через данный катет, составляет с плоскостью основания угол в 45. Найдите объем конуса.
Геометрия 11 класс
Контрольная работа № 5 по теме:
«Объем шара и площадь сферы»
Вариант 1
-
Диаметр шара равен высоте конуса, образующая которого составляет с плоскостью основания угол в 60. Найдите отношение объемов конуса и шара.
-
Объем цилиндра равен 96 см3, площадь его осевого сечения 48 см2. Найдите площадь сферы, описанной около цилиндра.
Вариант 2
-
В конус, осевое сечение которого есть правильный треугольник, вписан шар. Найдите отношение площади сферы к площади боковой поверхности конуса.
-
Диаметр шара равен высоте цилиндра, осевое сечение которого есть квадрат. Найдите отношение объемов цилиндра и шара.
Геометрия 11 класс
Контрольная работа № 5 по теме:
«Объем шара и площадь сферы»
Вариант 1
-
Диаметр шара равен высоте конуса, образующая которого составляет с плоскостью основания угол в 60. Найдите отношение объемов конуса и шара.
-
Объем цилиндра равен 96 см3, площадь его осевого сечения 48 см2. Найдите площадь сферы, описанной около цилиндра.
Вариант 2
-
В конус, осевое сечение которого есть правильный треугольник, вписан шар. Найдите отношение площади сферы к площади боковой поверхности конуса.
-
Диаметр шара равен высоте цилиндра, осевое сечение которого есть квадрат. Найдите отношение объемов цилиндра и шара.
Геометрия 11 класс
Итоговая контрольная работа
Вариант 1
1. В правильной четырехугольной пирамиде МАВСD сторона основания равна 6, а боковое ребро -5. Найдите:
-
площадь боковой поверхности пирамиды;
-
объем пирамиды;
-
угол наклона боковой грани к плоскости основания;
-
скалярное произведение векторов ;
-
площадь описанной около пирамиды сферы;
-
угол между ВD и плоскостью DMC.
Вариант 2
1. В правильной треугольной пирамиде МАВС сторона основания равна , а боковое ребро -5. Найдите:
-
площадь боковой поверхности пирамиды;
-
объем пирамиды;
-
угол наклона боковой грани к плоскости основания;
-
скалярное произведение векторов , где Е – середина ВС;
-
объем вписанного в пирамиду шара;
-
угол между стороной основания и плоскостью боковой грани.
Геометрия 11 класс
Итоговая контрольная работа
Вариант 1
1. В правильной четырехугольной пирамиде МАВСD сторона основания равна 6, а боковое ребро -5. Найдите:
-
площадь боковой поверхности пирамиды;
-
объем пирамиды;
-
угол наклона боковой грани к плоскости основания;
-
скалярное произведение векторов ;
-
площадь описанной около пирамиды сферы;
-
угол между ВD и плоскостью DMC.
Вариант 2
1. В правильной треугольной пирамиде МАВС сторона основания равна , а боковое ребро -5. Найдите:
-
площадь боковой поверхности пирамиды;
-
объем пирамиды;
-
угол наклона боковой грани к плоскости основания;
-
скалярное произведение векторов , где Е – середина ВС;
-
объем вписанного в пирамиду шара;
-
угол между стороной основания и плоскостью боковой грани.