Урок по теме «Сочетания и размещения»

Организационная информация

Тема урока: «Сочетания и размещения»

Предмет: алгебра и начала анализа.

Класс: 11.

Автор урока: Гомонова Галина Васильевна, учитель математики.

Образовательное учреждение: ГБОУ СОШ п. Масленниково Хворостянского района Самарской области.

Методическая информация

Методологическая база:

  1. программа: Математика. 5 – 6 классы. Алгебра. 7 – 9 классы. Алгебра и начала анализа. 10 – 11 классы. Авторы – составители И.И. Зубарева, А.Г. Мордкович. Москва: Мнемозина, 2009 год.

  2. УМК:

  • А.Г.Мордкович. Алгебра и начала математического анализа. 10 – 11классы. В 2 ч. Ч. 1. Учебник;

  • А.Г.Мордкович и др. Алгебра и начала математического анализа. 10 – 11классы. В 2 ч. Ч. 2. Задачник;

  • И.Р.Высоцкий, И.В.Ященко. ЕГЭ 2012. Математика. Задача В10. Теория вероятностей. Рабочая тетрадь/Под редакцией А.Л.Семенова, И.В.Ященко. Москва. Издательство МЦНМО, 2012;

  • Задача В10. Открытый банк заданий по математике. ЕГЭ 2012.

  1. интернет – источники:

сочетания

перестановки размещения

Вопросы.

Сколькими способами можно выбрать 5 учеников из 30 для дежурства в столовой; актив класса (староста, культорг, редактор стенгазеты, организатор спортивных мероприятий) – 4 человека из 30; 7 монет из 10 данных монет; 10 карт из колоды в 32 карты?

Ответ:

  • 5 учеников из 30 для дежурства в столовой можно выбрать способами; 7 монет из 10 данных монет можно выбрать способами; 10 карт из колоды в 32 карты способами (в этих случаях порядок не важен, и поэтому мы используем сочетания).

  • Для состава актива класса важно, кто именно будет старостой, кто – культоргом, кто – редактором стенгазеты и кто будет отвечать за спорт. Поэтому следует использовать размещения: нужный выбор (4 человека из 30) можно произвести способами.

Для любых натуральных чисел n и k, таких, что k<n, справедливы соотношения:

(слайд 14)

Задача. (слайд 15)

Сколько трехзначных чисел с различными цифрами можно составить из цифр 0, 1, 2, 3, 4, 5?

Решение:

Из шести данных цифр можно составить чисел, но среди них будут и трехзначные числа, начинающиеся с нуля (чего, естественно, быть не может). Посчитаем количество таких чисел. В них на первом месте стоит нуль. Значит, на оставшиеся две позиции размещают оставшиеся пять цифр. Поэтому таких чисел будет

Следовательно, искомых чисел можно получить:

Ответ: 100.

Задача. (слайд 16)

Сколько существует трехзначных чисел, в которых цифры различные и нечетные.

Решение:

Нечётных цифр пять: 1,3,5,7,9. Их надо разместить на три позиции. Поэтому количество искомых чисел равно числу размещения.

Ответ: 60.

Задача. (слайд 17)

Найти число диагоналей n – угольника.

Решение:

Имеем n точек плоскости, из которых никакие три не лежат на одной прямой. Соединим эти точки попарно всеми возможными способами. Будем иметь

отрезков. Из этих отрезков n отрезков являются сторонами многоугольника. Тогда диагоналей будет: В соответствии с полученной формулой имеем: у треугольника 0 диагоналей, у четырехугольника 2 диагонали, у пятиугольника 5 диагоналей, у шестиугольника 9 диагоналей и т.д.

Задача. (слайд 18)

Сколькими способами можно составить расписание на вторник, если изучаются 10 предметов и должно быть 6 уроков (порядок уроков неважен).

Решение:

Используем формулу для числа сочетаний из n элементов по k и получим

способов.

Ответ: 210.

3.4. Решение задач в группах.

А теперь перейдем к работе в группах. Ваша задача: решить задачи, оформить их в тетрадях и рассказать о проделанной совместной работе. Листочки с заданиями на столах. Помогайте друг другу при решении. (Учитель, в процессе работы учащихся, оказывает помощь каждой группе).

Задачи для решения на закрепление нового материала

Задача № 1. Сколькими способами могут быть расставлены 5 участниц финального забега на 5-ти беговых дорожках?

Решение:

Р5 = 5!= 1 ∙2 ∙3 ∙4 ∙5 = 120 способов.

Ответ: 120 способов.

Задача №2. Сколько трехзначных чисел можно составить из цифр 1,2,3, если каждая цифра входит в изображение числа только один раз?

Решение:

Число всех перестановок из трех элементов равно Р3=3!, где 3!=1 · 2 · 3=6. Значит, существует шесть трехзначных чисел, составленных из цифр 1,2,3.

Ответ: 6 чисел.

Задача № 3. Сколькими способами четверо юношей могут пригласить четырех из шести девушек на танец?

Решение:

Два юноши не могут одновременно пригласить одну и ту же девушку. И

варианты, при которых одни и те же девушки танцуют с разными юношами,

считаются разными, поэтому:

Ответ: 360.

Задача № 4. Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 при условии, что в записи числа каждая цифра используется только один раз?

Решение:

В условии задачи предложено подсчитать число всевозможных комбинаций из трех цифр, взятых из предположенных девяти цифр, причём порядок

расположения цифр в комбинации имеет значение (например, числа 132 и 231 различные). Иначе говоря, нужно найти число размещений из девяти элементов по три. По формуле числа размещений находим:

Ответ: 504 трехзначных чисел.

Задача №5. Сколькими способами из 7 человек можно выбрать комиссию, состоящую из 3 человек?

Решение:

Чтобы рассмотреть все возможные комиссии, нужно рассмотреть все возможные 3 – элементные подмножества множества, состоящего из 7 человек. Искомое число способов равно

Ответ: 35 способов.

Задача № 6. В соревновании участвуют 12 команд. Сколько существует вариантов распределения призовых (1, 2, 3) мест?

Решение:

А123 = 12 ∙11 ∙10 = 1320 вариантов распределения призовых мест.

Ответ: 1320 вариантов.

Задача № 7. На соревнованиях по лёгкой атлетике нашу школу представляла команда из 10 спортсменов. Сколькими способами тренер может определить, кто из них побежит в эстафете 4100 м на первом, втором, третьем и четвёртом этапах?

Решение:

Выбор из 10 по 4 с учётом порядка: способов.

Ответ: 5040 способов.

Задача № 8. Сколькими способами можно выложить в ряд красный, черный, синий и зеленый шарики?

Решение:

На первое место можно поставить любой из четырех шариков (4 способа), на

второе – любой из трех оставшихся (3 способа), на третье место – любой из

оставшихся двух (2 способа), на четвертое место – оставшийся последний шар.

Всего 4 · 3 · 2 · 1 = 24 способа. Р4 = 4! = 1 · 2 · 3 · 4 = 24. Ответ: 24 способа.

Задача № 9. Учащимся дали список из 10 книг, которые рекомендуется прочитать во время каникул. Сколькими способами ученик может выбрать из них 6 книг?

Решение:

Выбор 6 из 10 без учёта порядка: способов.

Ответ: 210 способов.

Задача № 10. В 9 классе учатся 7 учащихся, в 10 — 9 учащихся, а в 11 — 8 учащихся. Для работы на пришкольном участке надо выделить двух учащихся из 9 класса, трех – из 10, и одного – из 11 . Сколько существует способов выбора учащихся для работы на пришкольном участке?

Решение:

Выбор из трёх совокупностей без учёта порядка, каждый вариант выбора из

первой совокупности (С72) может сочетаться с каждым вариантом выбора из

второй (С93) и с каждым вариантом выбора третьей (С81) по правилу умножения получаем:

Ответ: 14 112 способов.

Задача № 11. Девятиклассники Женя, Сережа, Коля, Наташа и Оля побежали на перемене к теннисному столу, за которым уже шла игра. Сколькими способами подбежавшие к столу пятеро девятиклассников могут занять очередь для игры в настольный теннис?

Решение:

Первым в очередь мог встать любой девятиклассник, вторым – любой из оставшихся троих, третьим – любой из оставшихся двоих и четвёртым – девятиклассник, подбежавший предпоследним, а пятым – последний. По правилу умножения у пяти учащихся существует 5· 4321=120 способов занять очередь.

Ответ: 120 способов.

Отчет групп о проделанной работе.

4. Итоги урока

Ученики проговаривают, что нового узнали на уроке. Учитель оценивает работу ребят.  При выходе из кабинета каждый ученик выбирает прямоугольник по цвету, соответствующему надписями “всё понятно и усвоено”, “трудно и не всё понятно”, “не понятно и не усвоено”, и опускает в соответствующий конверт.

5. Домашнее задание

1 вариант.

Решить задачи:

1.  Сколькими способами можно из 6 человек составить комиссию, состоящую из двух человек?

2.  В соревновании участвуют 10 человек. Сколькими способами могут распределиться между ними места?

3.  Сколькими способами можно расставить на полке 4 различные книги?

4.  Сколько различных словарей необходимо переводчику, чтобы он мог переводить с любого из 5 языков – русского, английского, немецкого, французского, испанского – на любой другой из этих языков?

5.  Пять человек обменялись друг с другом фотографиями. Сколько всего фотографий было?

6.  На плоскости отмечены 6 точек. Каждые две точки соединили отрезком. Сколько получилось отрезков?

2 вариант

Решить задачи:

1.  Сколькими способами можно переставить 5 различных геометрических фигур?

2.  Пять человек пожали друг другу руки. Сколько было рукопожатий?

3.  За свои рисунки ученик получил две положительные оценки. Какими они могут быть? Сколько вариантов?

4.  Сколько флагов можно составить из трех разных цветов, если имеются полосы синего, белого, красного цветов?

5.  В понедельник в пятом классе 5 уроков. Сколькими способами можно составить расписание на понедельник?

6.  Из десяти учащихся надо выбрать старосту, физорга и культорга. Сколькими способами это можно сделать?

Ответы и решения:

I вариант

II вариант

1.  

2.  

3.  Pn=4!=24

4.  Pn=5!=120

5.  Pn=5!=120

6.  

1.  Pn=5!=120

2.  

3.  положительные оценки: 4, 5.

22=4

4.  Рn=3!=6

5.  Pn=5!=120

6.  

 

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here