Часть А Задачи, оцениваемые в 3 балла
1. Яблоко и апельсин вместе весят столько же, сколько груша и персик. Яблоко вместе с грушей весят меньше, чем апельсин с персиком, а гру- ша вместе с апельсином весят меньше, чем яблоко с персиком. Какой из фруктов самый тяжёлый?
Ответ __________________________________
2. В классе сидят мальчики и девочки. Если в класс войдут ещё 10 мальчиков, то всего мальчиков станет вдвое больше, чем девочек. Сколько девочек должны выйти из класса, чтобы среди оставшихся ребят оказалось вдвое больше мальчиков, чем девочек?
Ответ __________________________________
3. На рисунке изображены квадрат и пять одинаковых кругов. Вершины квадрата расположены в центрах внешних кругов. Тогда отношение площади закра- шенной части кругов к площади их незакрашенной части равно:
Ответ __________________________________
4. Катя и четыре её подружки разделили между собой несколько конфет. В результате оказалось, что у всех девочек разное число конфет, а общее число конфет у Кати и двух девочек больше, чем общее число конфет у остальных двух. Какое самое маленькое число конфет может быть у Кати?
Ответ __________________________________
5. Сколько двузначных чисел обладают таким свойством: если переставить местами их цифры, то они увеличиваются не менее, чем в три раза?
Ответ __________________________________
6. Если разделить 5050 на 2525, то получится:
Ответ __________________________________
7. На рисунке изображены равносторонний треугольник и правильный пятиугольник. Найдите угол х.
Ответ __________________________________ |
8. Вокруг прямоугольного сквера проложена дорожка, которая на всём своём протяжении имеет одинако- вую ширину. Наружная граница дорожки на 8 метров длиннее внутренней. Чему равна ширина дорожки?
Ответ __________________________________
Часть В Задачи, оцениваемые в 4 балла
9. Числа а и b таковы, что 4 ≤ а ≤ 6, 1 ≤ b ≤ 2. Какое из следующих чисел обязательно меньше 9?
а) 3а – 2b; б) а + 2b; в) 3а – b; г) 8b – 2а; д) 13b – а.
10. На стороне ВС равнобедренного треугольника АВС с основанием АС нашлась такая точка М, что МСА – МАВ = В. Что можно утверждать об этом треугольнике?
а) он равносторонний; в) боковая сторона больше основания;
б) один из его углов прямой; г) угол при вершине В – тупой.
11. Диагональ делит четырёхугольник с периметром 31см на два треуголь- ника с периметрами 21см и 30см. Какова длина этой диагонали?
Ответ __________________________________
12. Два прямоугольника ABCD и DBEF расположены так, как показано на чертеже. Какова площадь прямоугольника DBEF?
Ответ __________________________________
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ШКОЛЬНАЯ ОЛИМПИАДА
МАТЕМАТИКА 9кл
________________________________________________
Фамилия и имя